Donnerstag, 20. November 2014

Astronomen finden "gespenstische Ausrichtung von Quasaren über Milliarden Lichtjahre hinweg"


Künstlerische Darstellung der rätselhafte Ausrichtung zwischen den Rotationsachsen von Quasaren und großräumigen Strukturen in denen sie sich befinden. | Copyright: ESO/M. Kornmesser

Liége (Belgien) - Mit dem Very Large Telescope (VLT) der Europäischen Südsternwarte (ESO) haben Astronomen erstmals die Ausrichtung der Achsen supermassereicher Schwarzer Löcher und großräumiger Strukturen im Universum sichtbar gemacht und dabei festgestellt, dass die Rotationsachsen der zentralen supermassereichen Schwarzen Löcher in einer Stichprobe von Quasaren über Milliarden von Lichtjahren parallel zueinander ausgerichtet sind. Zudem neigen die Rotationsachsen dieser Quasare dazu, sich nach den riesigen Strukturen im kosmischen Netz auszurichten, in dem sie sich befinden.

Quasare sind Galaxien mit sehr aktiven supermassereichen Schwarzen Löchern in ihrem Zentrum. Diese Schwarzen Löcher sind von sich drehenden Scheiben aus extrem heißem Material umgeben, das oft in langgezogenen Strahlen, sogenannten Jets, entlang ihrer Rotationsachsen (also senkrecht zur Scheibenebene) hinausgeschleudert wird. Quasare können heller sein als all die Sterne in ihrer Wirtsgalaxie zusammengenommen.


Wie das europäische Astronomenteam unter der Leitung von Damien Hutsemékers von der Université de Liège aktuell im Fachjournal "Astronomy & Astrophysics" berichtet, haben die Forscher mit dem FORS-Instrument am VLT 93 Quasare untersucht, die wir zur Zeit so sehen, wie sie waren als das Universum nur ein Drittel so alt war wie heute. Von diesen Quasaren ist bekannt, dass sie riesige Gruppen bilden, die sich über Milliarden von Lichtjahren verteilen.


www.grenzwissenschaft-aktuell.de
  + + + HIER können Sie unseren täglichen Newsletter bestellen + + +

"Die erste seltsame Sache, die wir bemerkten, war, dass die Rotationsachsen von einigen der Quasare zueinander ausgerichtet waren – obwohl diese Quasare einige Milliarden Lichtjahre von einander getrennt sind”, erläutert Hutsemékers.

In einem weiteren Schritt untersuchten die Astronomen dann, ob die Rotationsachsen nicht nur zu einander eine Verbindung besitzen, sondern auch zu den großräumigen Strukturen im Universum zu dieser Zeit.


"Wenn Astronomen sich die Verteilung von Galaxien auf Skalen von mehreren Milliarden von Lichtjahren anschauen, dann sehen sie, dass sie nicht gleichmäßig ist" erläutert die Pressemitteilung der ESO. "Stattdessen bilden die Galaxien ein kosmisches Netz aus Filamenten und Klumpen um riesige Hohlräume, in denen kaum Galaxien zu finden sind. Diese fesselnd schöne Materieanordnung wird großräumige Struktur genannt."



Diese besonders detaillierte Simulation der großräumigen Struktur des Universums entstand im Rahmen der Illustris-Simulation. Die Verteilung der Dunklen Materie ist in blau dargestellt, die Verteilung des Gases in orange. Diese Simulation zeigt den gegenwärtigen Zustand des Universums und ist auf einen massereichen Galaxienhaufen zentriert. Der dargestellte Bereich hat eine Kantenlänge von 300 Millionen Lichtjahren. | Copyright: Illustris Collaboration

Die neuen Ergebnisse deuten nun darauf hin, dass die Rotationsachsen der Quasare dazu neigen, sich parallel zu den großräumigen Strukturen auszurichten, in denen sie sich selbst befinden. Wenn sich also die Quasare in einem langen Filament befinden, dann werden sich die Drehachsen ihrer zentralen Schwarzen Löcher entlang des Filaments ausrichten. Die Forscher schätzen die Wahrscheinlichkeit dafür, dass diese Ausrichtungen bloß Zufall sind auf weniger als 1% ein.


"Eine Korrelation zwischen der Ausrichtung von Quasaren und der Struktur, zu der sie gehören, ist eine wichtige Vorhersage numerischer Simulationen der Entwicklung unseres Universums. Unsere Beobachtungsdaten liefern den ersten experimentellen Beweis dieses Effekts auf Skalen, die viel größer sind als alles, was bisher für normale Galaxien beobachtet wurde”, fügt Dominique Sluse vom Argelander-Institut für Astronomie in Bonn und der Universität Liège hinzu.


Das Team konnte weder die Rotationsachsen noch die Jets der Quasare direkt sehen. Stattdessen maßen sie die Polarisation des Lichts jedes Quasars und für 19 von ihnen fanden sie ein maßgeblich polarisiertes Signal. Die Richtung dieser Polarisation konnte zusammen mit weiteren Informationen dazu verwendet werden, um den Neigungwinkel der Akkretionsscheibe zur Sehlinie und somit die Richtung der Drehachse des Quasars zu bestimmen.


"Die Ausrichtung in den neuen Daten auf Skalen, die sogar größer sind als aktuelle Vorhersagen von Simulationen, könnten ein Hinweis darauf sein, dass es eine fehlende Zutat in unserem heutigen Modell des Universums gibt", erklärt Sluse abschließend.


grenzwissenschaft-aktuell.de
Copyright: grenzwissenschaft-aktuell.de
(falls nicht anders angegeben)


Für die Inhalte externer Links übernehmen wir keine Verantwortung oder Haftung.


WEITERE MELDUNGEN finden Sie auf unserer STARTSEITE